The role of aromatic L-amino acid decarboxylase in bacillamide C biosynthesis by Bacillus atrophaeus C89

نویسندگان

  • Lei Yuwen
  • Feng-Li Zhang
  • Qi-Hua Chen
  • Shuang-Jun Lin
  • Yi-Lei Zhao
  • Zhi-Yong Li
چکیده

For biosynthesis of bacillamide C by Bacillus atrophaeus C89 associated with South China sea sponge Dysidea avara, it is hypothesized that decarboxylation from L-tryptophan to tryptamine could be performed before amidation by the downstream aromatic L-amino acid decarboxylase (AADC) to the non-ribosomal peptide synthetases (NRPS) gene cluster for biosynthesizing bacillamide C. The structural analysis of decarboxylases' known substrates in KEGG database and alignment analysis of amino acid sequence of AADC have suggested that L-tryptophan and L-phenylalanine are the potential substrates of AADC. The enzymatic kinetic experiment of the recombinant AADC proved that L-tryptophan is a more reactive substrate of AADC than L-phenylalanine. Meanwhile, the AADC-catalyzed conversion of L-tryptophan into tryptamine was confirmed by means of HPLC and LC/MS. Thus during bacillamide C biosynthesis, the decarboxylation of L-tryptophan to tryptamine is likely conducted first under AADC catalysis, followed by the amidation of tryptamine with the carboxylic product of NRPS gene cluster.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Draft genome sequence of the sponge-associated strain Bacillus atrophaeus C89, a potential producer of marine drugs.

Bacillus atrophaeus C89, isolated from the marine sponge Dysidea avara, is a potential producer of bioactive compounds, such as neobacillamide A and bacillamide C. Here, we present a 4.2-Mb assembly of its genome. The nonribosomal peptide synthetases (NRPSs) make it possible to produce the bioactive compounds.

متن کامل

Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis.

Aromatic amino acids are precursors of numerous plant secondary metabolites with diverse biological functions. Many of these secondary metabolites are already being used as active pharmaceutical or nutraceutical ingredients, and there are numerous exploratory studies of other compounds with promising applications. p-Coumaric acid is derived from aromatic amino acids and, besides being a valuabl...

متن کامل

Stereo-Specific Transcript Regulation of the Polyamine Biosynthesis Genes by Enantiomers of Ornithine in Tobacco Cell Culture

Background: Ornithine (Orn) plays an essential role in the metabolism of plant cells through incorporation in polyamines biosynthesis, the urea cycle and nitrogen metabolism. Physiological response of the plant cells to its two enantiomers have not been widely investigated yet.Objectives: This study aimed to evaluate effect of ornithine enantiomers on exp...

متن کامل

Lack of regulation of aromatic L-amino acid decarboxylase in intact bovine chromaffin cells.

Aromatic l-amino acid decarboxylase (AADC) is the second enzyme in the catecholamine biosynthetic pathway, and its activity is generally considered not to be limiting, and therefore not involved, in regulating flux through this pathway. Recent studies showing that its activity can be regulated in vivo and that the enzyme can be phosphorylated and activated in vitro have raised the possibility t...

متن کامل

Expression of tryptophan decarboxylase and tyrosine decarboxylase genes in tobacco results in altered biochemical and physiological phenotypes.

The substrate specificity of tryptophan (Trp) decarboxylase (TDC) for Trp and tyrosine (Tyr) decarboxylase (TYDC) for Tyr was used to modify the in vivo pools of these amino acids in transgenic tobacco. Expression of TDC and TYDC was shown to deplete the levels of Trp and Tyr, respectively, during seedling development. The creation of artificial metabolic sinks for Trp and Tyr also drastically ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013